erasable/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
// NB: Last updated for Rust 1.40 parity. All impls are in rustdoc gutter order.
// Forwarding impls are provided for impls provided on Box.
//! Erase pointers of their concrete type and store type-erased pointers.
//!
//! This is roughly equivalent to C's `void*`.
//!
//! There are two main useful reasons to type erase pointers in Rust:
//!
//! - Removing viral generics from internal implementation details.
//! If the internals truly don't care about the stored type,
//! treating it opaquely reduces monomorphization cost
//! both to the author and the compiler.
//! - Thin pointers to `?Sized` types. If an unsized type stores its metadata inline,
//! then it can implement [`Erasable`] and be used behind type-erased pointers.
//! The type erased pointer does not have to carry the metadata,
//! and the fat pointer can be recovered from the inline metadata.
//! We provide the [`Thin`] wrapper type to provide thin pointer types.
#![warn(missing_docs, missing_debug_implementations)]
#![no_std]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use alloc::{boxed::Box, rc, sync};
use core::{
cmp::Ordering,
fmt::{self, Debug, Display, Formatter, Pointer},
future::Future,
hash::{Hash, Hasher},
iter::{FromIterator, FusedIterator},
marker::PhantomData,
mem::ManuallyDrop,
ops::{Deref, DerefMut},
pin::Pin,
ptr,
task::{Context, Poll},
};
/// A thin, type-erased pointer.
///
/// The `Erased` type is private, and should be treated as an opaque type.
/// When `extern type` is stabilized, `Erased` will be defined as one.
///
/// The current implementation uses a `struct Erased` with size 0 and align 1.
/// If you want to offset the pointer, make sure to cast to a `u8` or other known type pointer first.
/// When `Erased` becomes an extern type, it will properly have unknown size and align.
pub type ErasedPtr = ptr::NonNull<Erased>;
#[cfg(not(has_extern_type))]
pub(crate) use priv_in_pub::Erased;
#[cfg(not(has_extern_type))]
mod priv_in_pub {
/// An erased type.
pub struct Erased; // extern type Erased
}
#[cfg(has_extern_type)]
extern "Rust" {
/// An erased type. Has unknown size and alignment.
pub type Erased;
}
impl Debug for Erased {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("Erased").finish()
}
}
/// A (smart) pointer type that can be type-erased (making a thin pointer).
///
/// When implementing this trait, you should implement it for all `Erasable` pointee types.
/// Implementing this trait allows use of the pointer in erased contexts, such as [`Thin`].
///
/// # Safety
///
/// A pointer type which is erasable must not include shared mutability before indirection.
/// Equivalently, the erased pointer produced by calling `erase` on some `P` must be the same
/// both before and after performing any set of operations on `&P`. `&mut P` methods (notably
/// `DerefMut`) are still allowed to mutate the pointer value, if necessary.
///
/// Additionally, the address of the deref target must be independent of the address of the pointer.
/// For example, `Box` implements `ErasablePtr` because it's a pointer to a managed heap allocation.
/// [`Lazy`](https://docs.rs/once_cell/1.2/once_cell/sync/struct.Lazy.html), however,
/// `Deref`s into its own location, and as such, can not implement `ErasablePtr`.
///
/// This is similar to (but distinct from!) the guarantees required by
/// [`Pin`](https://doc.rust-lang.org/std/pin/struct.Pin.html) or
/// [`StableDeref`](https://docs.rs/stable_deref_trait/1/stable_deref_trait/trait.StableDeref.html).
///
/// `Pin` requires no access to `&mut P`/`&mut P::target`, but these remain safe
/// even when using [`Thin`] through [`Thin::with_mut`] and [`DerefMut`]` for Thin`.
/// `StableDeref` requires the deref target to not change between invocations,
/// but that is completely fine behavior for `ErasablePtr` types.
///
/// # Examples
///
/// ```rust
/// use erasable::*;
///
/// #[derive(Debug)]
/// struct MyBox<T: ?Sized>(Box<T>);
///
/// unsafe impl<T: ?Sized> ErasablePtr for MyBox<T>
/// where
/// T: Erasable
/// {
/// fn erase(this: Self) -> ErasedPtr {
/// ErasablePtr::erase(this.0)
/// }
///
/// unsafe fn unerase(this: ErasedPtr) -> Self {
/// Self(ErasablePtr::unerase(this))
/// }
/// }
///
/// let array = [0; 10];
/// let boxed = MyBox(Box::new(array));
/// let thin_box: Thin<MyBox<_>> = boxed.into();
/// dbg!(thin_box);
/// ```
///
/// # Counterexamples
// These are available to be run under miri to observe UB as tests/this_is_ub_examples.rs!
///
/// This implementation of `ErasablePtr` is unsound
/// because it features shared mutability before indirection:
///
/// ```rust,no_run
/// # use {erasable::*, std::cell::Cell};
/// struct Pls {
/// inner: Cell<Box<u8>>,
/// }
///
/// unsafe impl ErasablePtr for Pls {
/// fn erase(this: Self) -> ErasedPtr { ErasablePtr::erase(this.inner.into_inner()) }
/// unsafe fn unerase(this: ErasedPtr) -> Self {
/// Pls { inner: Cell::new(ErasablePtr::unerase(this)) }
/// }
/// }
///
/// impl Pls {
/// fn mutate(&self, to: Box<u8>) { self.inner.set(to); }
/// }
///
/// let thin = Thin::from(Pls { inner: Cell::new(Box::new(0)) });
/// Thin::with(&thin, |pls| pls.mutate(Box::new(1))); // drops box(0), leaks box(1)
/// drop(thin); // `thin` is still Pls(Box(0)); use-after-free
/// ```
///
/// This implementation of `ErasablePtr` is unsound
/// because it dereferences to the interior of the type:
///
/// ```rust,no_run
/// # use {erasable::*, std::ops::Deref};
/// struct Why {
/// inner: Box<u8>,
/// }
///
/// unsafe impl ErasablePtr for Why {
/// fn erase(this: Self) -> ErasedPtr { ErasablePtr::erase(this.inner) }
/// unsafe fn unerase(this: ErasedPtr) -> Self { Why { inner: ErasablePtr::unerase(this) } }
/// }
///
/// impl Deref for Why {
/// type Target = Box<u8>;
/// fn deref(&self) -> &Box<u8> { &self.inner }
/// }
///
/// let thin = Thin::from(Why { inner: Box::new(0) });
/// let _: &Box<u8> = thin.deref(); // use-after-free; cannot deref to value that does not exist
/// ```
pub unsafe trait ErasablePtr {
/// Turn this erasable pointer into an erased pointer.
///
/// To retrieve the original pointer, use `unerase`.
fn erase(this: Self) -> ErasedPtr;
/// Unerase this erased pointer.
///
/// # Safety
///
/// The erased pointer must have been created by `erase`.
unsafe fn unerase(this: ErasedPtr) -> Self;
}
/// A pointee type that supports type-erased pointers (thin pointers).
///
/// This trait is automatically implemented for all sized types,
/// and can be manually implemented for unsized types that know their own metadata.
///
/// # Safety
///
/// Must be implemented as described and may be relied upon by generic code.
pub unsafe trait Erasable {
/// Turn this erasable pointer into an erased pointer.
///
/// To retrieve the original pointer, use `unerase`.
#[inline(always)]
fn erase(this: ptr::NonNull<Self>) -> ErasedPtr {
erase(this)
}
/// Unerase this erased pointer.
///
/// Note that this _must_ be sound to roundtrip pointers with any provenance,
/// shared, unique, raw, frozen, mutable, and any valid combination thereof.
/// (In other words, `&mut _` and `&_` can be safely erased and unerased, and
/// any raw pointer should roundtrip without losing the provenance it had.)
///
/// Concretely, this means that the resulting pointer _must_ be derived
/// from the input pointer without any intervening references manifested.
/// Additionally, no references to the pointee _at all_ should be created,
/// as their mere temporary existence may impact the validity and
/// usable provenance of other pointers to the same location.
///
/// Creating a shared reference sounds on the surface like it should be ok.
/// After all, you have a known-valid pointer to your type, and you can
/// borrow from whatever pointer was erased. However, in the face of raw
/// pointers with a shared mutable provenance, this is problematic.
/// If a write to the pointee location even potentially races with any
/// invocation of `unerase`, and it creates a reference to the location,
/// we have immediate undefined behavior for writing behind a shared ref.
///
/// The root issue is that there may be external synchronization that this
/// implementation has no way of knowing about. An implementation of this
/// trait must only read the mimimum amount of data required to re-type the
/// pointer, and must do so with a raw pointer read, or, if and only if
/// there is a known `UnsafeCell` point (such as an atomic), a reference to
/// that `UnsafeCell` point and the safe API of that `UnsafeCell` point.
///
/// # Safety
///
/// The erased pointer must have been created by `erase`ing a valid pointer.
unsafe fn unerase(this: ErasedPtr) -> ptr::NonNull<Self>;
/// Whether this implementor has acknowledged the 1.1.0 update to
/// `unerase`'s documented implementation requirements.
///
/// Prior to 1.1.0, creating a temporary shared reference (`&_`) in
/// `unerase` was explicitly listed as allowed, but for the 1.1.0 release
/// it was determined that this in fact can cause problems for some use
/// cases that `Erasable` is designed to support.
///
/// Implementing this as `false` is _not allowed_ and is _not_ permission
/// to create references within `unerase`. It only exists as a way to
/// make the soundness fix in 1.1.0 disallowing references not breaking.
/// You _must_ override this with a value of `true` and follow the current
/// documented requirements for `unerase`, and not create references.
///
/// If your use of `unerase` would be problematic if it creates a temporary
/// shared reference, you should assert that this value is `true`.
/// Not doing so will expose you to potentially unsound implementations
/// written against 1.0.0 before the reference clarification was made.
///
/// The environment variable `ERASABLE_ENFORCE_1_1_0_SEMANTICS` can be set
/// to enforce that all implementors have provided an override for this.
#[cfg(not(enforce_1_1_0_semantics))]
const ACK_1_1_0: bool = false;
/// Whether this implementor has acknowledged the 1.1.0 update to
/// `unerase`'s documented implementation requirements.
///
/// Implementing this as `false` is _not allowed_.
/// You _must_ override this with a value of `true`.
#[cfg(enforce_1_1_0_semantics)]
const ACK_1_1_0: bool;
}
/// Erase a pointer.
#[inline(always)]
pub fn erase<T: ?Sized>(ptr: ptr::NonNull<T>) -> ErasedPtr {
unsafe { ptr::NonNull::new_unchecked(ptr.as_ptr() as *mut Erased) }
}
/// Wrapper struct to create thin pointer types.
///
/// This type is guaranteed to have the same repr as [`ErasedPtr`].
///
/// # Examples
///
/// ```rust
/// use erasable::*;
///
/// let array = [0; 10];
/// let boxed = Box::new(array);
/// let thin_box: Thin<Box<_>> = boxed.into();
/// dbg!(thin_box);
/// ```
///
/// Note that this uses a `Sized` type: `[i32; 10]`.
/// This library does not provide erasable `?Sized` types.
/// For that, try out [`slice-dst`](https://lib.rs/slice-dst).
#[repr(transparent)]
pub struct Thin<P: ErasablePtr> {
ptr: ErasedPtr,
marker: PhantomData<P>,
}
unsafe impl<P: ErasablePtr> Send for Thin<P> where P: Send {}
unsafe impl<P: ErasablePtr> Sync for Thin<P> where P: Sync {}
impl<P: ErasablePtr> From<P> for Thin<P> {
#[inline(always)]
fn from(this: P) -> Self {
Thin::<P> {
ptr: P::erase(this),
marker: PhantomData,
}
}
}
impl<P: ErasablePtr> Thin<P> {
fn inner(this: &Self) -> ManuallyDrop<P> {
unsafe { ManuallyDrop::new(P::unerase(this.ptr)) }
}
// noinspection RsSelfConvention
// `From` can't be impl'd because it's an impl on an uncovered type
// `Into` can't be impl'd because it conflicts with the reflexive impl
/// Extract the wrapped pointer.
pub fn into_inner(this: Self) -> P {
unsafe { P::unerase(ManuallyDrop::new(this).ptr) }
}
/// Run a closure with a borrow of the real pointer.
pub fn with<F, T>(this: &Self, f: F) -> T
where
F: FnOnce(&P) -> T,
{
f(&Thin::inner(this))
}
/// Run a closure with a mutable borrow of the real pointer.
pub fn with_mut<F, T>(this: &mut Self, f: F) -> T
where
F: FnOnce(&mut P) -> T,
{
// SAFETY: guard is required to write potentially changed pointer value, even on unwind
let mut this = unsafe {
scopeguard::guard(P::unerase(this.ptr), |unerased| {
ptr::write(this, Thin::from(unerased))
})
};
f(&mut this)
}
/// Check two thin pointers for pointer equivalence.
pub fn ptr_eq<Q: ErasablePtr>(this: &Self, that: &Thin<Q>) -> bool {
this.ptr == that.ptr
}
}
impl<P: ErasablePtr> Drop for Thin<P> {
fn drop(&mut self) {
unsafe { P::unerase(self.ptr) };
}
}
// ~~~ Box<T> like impls ~~~ //
impl<P: ErasablePtr, T: ?Sized> AsMut<T> for Thin<P>
where
P: AsMut<T>,
{
fn as_mut(&mut self) -> &mut T {
unsafe { Thin::with_mut(self, |p| erase_lt_mut(p.as_mut())) }
}
}
impl<P: ErasablePtr, T: ?Sized> AsRef<T> for Thin<P>
where
P: AsRef<T>,
{
fn as_ref(&self) -> &T {
unsafe { Thin::with(self, |p| erase_lt(p.as_ref())) }
}
}
// BorrowMut conflicts with reflexive impl
impl<P: ErasablePtr> Clone for Thin<P>
where
P: Clone,
{
fn clone(&self) -> Self {
Thin::with(self, |this| this.clone()).into()
}
}
// CoerceUnsized is unstable
impl<P: ErasablePtr> Debug for Thin<P>
where
P: Debug,
{
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Thin::with(self, |p| p.fmt(f))
}
}
impl<P: ErasablePtr> Deref for Thin<P>
where
P: Deref,
{
type Target = P::Target;
fn deref(&self) -> &P::Target {
// SAFETY: This is safe because we are promoting the lifetime of &P::Target
// from borrowing from the transient &P to borrowing from our &Thin<P>.
// The Thin<P> is equivalent to the P for the purposes of owning derived pointers,
// and ErasablePtr guarantees that Deref goes to an independent location.
unsafe { Thin::with(self, |p| erase_lt(P::deref(p))) }
}
}
impl<P: ErasablePtr> DerefMut for Thin<P>
where
P: DerefMut,
{
fn deref_mut(&mut self) -> &mut P::Target {
// SAFETY: This is safe because we are promoting the lifetime of &P::Target
// from borrowing from the transient &P to borrowing from our &Thin<P>.
// The Thin<P> is equivalent to the P for the purposes of owning derived pointers,
// and ErasablePtr guarantees that Deref goes to an independent location.
unsafe { Thin::with_mut(self, |p| erase_lt_mut(P::deref_mut(p))) }
}
}
// DispatchFromDyn is unstable
impl<P: ErasablePtr> Display for Thin<P>
where
P: Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Thin::with(self, |p| p.fmt(f))
}
}
impl<P: ErasablePtr> DoubleEndedIterator for Thin<P>
where
P: DoubleEndedIterator,
{
fn next_back(&mut self) -> Option<Self::Item> {
Thin::with_mut(self, |p| p.next_back())
}
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
Thin::with_mut(self, |p| p.nth_back(n))
}
}
impl<P: ErasablePtr> Eq for Thin<P> where P: Eq {}
impl<P: ErasablePtr> ExactSizeIterator for Thin<P> where P: ExactSizeIterator {}
// Fn, FnMut, FnOnce are unstable to implement
impl<P: ErasablePtr, A> FromIterator<A> for Thin<P>
where
P: FromIterator<A>,
{
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
P::from_iter(iter).into()
}
}
impl<P: ErasablePtr> FusedIterator for Thin<P> where P: FusedIterator {}
impl<P: ErasablePtr> Future for Thin<P>
where
P: Future,
{
type Output = P::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
unsafe {
Thin::with_mut(self.get_unchecked_mut(), |this| {
Pin::new_unchecked(this).poll(cx)
})
}
}
}
// Generator is unstable
impl<P: ErasablePtr> Hash for Thin<P>
where
P: Hash,
{
fn hash<H: Hasher>(&self, state: &mut H) {
Thin::with(self, |p| p.hash(state))
}
}
impl<P: ErasablePtr> Hasher for Thin<P>
where
P: Hasher,
{
fn finish(&self) -> u64 {
Thin::with(self, |p| p.finish())
}
fn write(&mut self, bytes: &[u8]) {
Thin::with_mut(self, |p| p.write(bytes))
}
fn write_u8(&mut self, i: u8) {
Thin::with_mut(self, |p| p.write_u8(i))
}
fn write_u16(&mut self, i: u16) {
Thin::with_mut(self, |p| p.write_u16(i))
}
fn write_u32(&mut self, i: u32) {
Thin::with_mut(self, |p| p.write_u32(i))
}
fn write_u64(&mut self, i: u64) {
Thin::with_mut(self, |p| p.write_u64(i))
}
fn write_u128(&mut self, i: u128) {
Thin::with_mut(self, |p| p.write_u128(i))
}
fn write_usize(&mut self, i: usize) {
Thin::with_mut(self, |p| p.write_usize(i))
}
fn write_i8(&mut self, i: i8) {
Thin::with_mut(self, |p| p.write_i8(i))
}
fn write_i16(&mut self, i: i16) {
Thin::with_mut(self, |p| p.write_i16(i))
}
fn write_i32(&mut self, i: i32) {
Thin::with_mut(self, |p| p.write_i32(i))
}
fn write_i64(&mut self, i: i64) {
Thin::with_mut(self, |p| p.write_i64(i))
}
fn write_i128(&mut self, i: i128) {
Thin::with_mut(self, |p| p.write_i128(i))
}
fn write_isize(&mut self, i: isize) {
Thin::with_mut(self, |p| p.write_isize(i))
}
}
impl<P: ErasablePtr> Iterator for Thin<P>
where
P: Iterator,
{
type Item = P::Item;
fn next(&mut self) -> Option<Self::Item> {
Thin::with_mut(self, |p| p.next())
}
fn size_hint(&self) -> (usize, Option<usize>) {
Thin::with(self, |p| p.size_hint())
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
Thin::with_mut(self, |p| p.nth(n))
}
}
impl<P: ErasablePtr> Ord for Thin<P>
where
P: Ord,
{
fn cmp(&self, other: &Thin<P>) -> Ordering {
Thin::with(self, |p| Thin::with(other, |other| p.cmp(other)))
}
}
impl<P: ErasablePtr> PartialEq for Thin<P>
where
P: PartialEq,
{
fn eq(&self, other: &Thin<P>) -> bool {
Thin::with(self, |p| Thin::with(other, |other| p.eq(other)))
}
}
impl<P: ErasablePtr> PartialOrd for Thin<P>
where
P: PartialOrd,
{
fn partial_cmp(&self, other: &Thin<P>) -> Option<Ordering> {
Thin::with(self, |p| Thin::with(other, |other| p.partial_cmp(other)))
}
}
impl<P: ErasablePtr> Pointer for Thin<P>
where
P: Pointer,
{
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Thin::with(self, |p| p.fmt(f))
}
}
// ~~~ impl Eraseable ~~~ //
unsafe impl<T: Sized> Erasable for T {
unsafe fn unerase(this: ErasedPtr) -> ptr::NonNull<T> {
// SAFETY: must not read the pointer for the safety of the impl directly below.
this.cast()
}
const ACK_1_1_0: bool = true;
}
// ~~~ impl ErasablePtr ~~~ //
// SAFETY NB: ErasablePtr for ptr::NonNull is unsound for unsized types, because
// the _only_ requirement for calling unerase is that the erased pointer came from erase.
// This means that _any_ value needs to successfully roundtrip through the two methods.
// On top of this, Erasable requires that unerase be called with a valid pointer,
// so that it is allowed to read from the pointer to recover unsized metadata.
// SAFETY: this impl is sound for sized types because we control the Erasable impl,
// and we know that Erasable for<T: Sized> T is the trivial impl that does no reads
// (see directly above).
unsafe impl<T: Sized> ErasablePtr for ptr::NonNull<T>
where
T: Erasable,
{
fn erase(this: Self) -> ErasedPtr {
T::erase(this)
}
unsafe fn unerase(this: ErasedPtr) -> Self {
T::unerase(this)
}
}
unsafe impl<P: ErasablePtr> ErasablePtr for Thin<P> {
fn erase(this: Self) -> ErasedPtr {
ManuallyDrop::new(this).ptr
}
unsafe fn unerase(this: ErasedPtr) -> Self {
Thin {
ptr: this,
marker: PhantomData,
}
}
}
unsafe impl<T: ?Sized> ErasablePtr for &'_ T
where
T: Erasable,
{
fn erase(this: Self) -> ErasedPtr {
T::erase(this.into())
}
unsafe fn unerase(this: ErasedPtr) -> Self {
&*T::unerase(this).as_ptr()
}
}
unsafe impl<T: ?Sized> ErasablePtr for &'_ mut T
where
T: Erasable,
{
fn erase(this: Self) -> ErasedPtr {
T::erase(this.into())
}
unsafe fn unerase(this: ErasedPtr) -> Self {
&mut *T::unerase(this).as_ptr()
}
}
unsafe impl<P> ErasablePtr for Pin<P>
where
P: ErasablePtr + Deref,
{
fn erase(this: Self) -> ErasedPtr {
unsafe { P::erase(Pin::into_inner_unchecked(this)) }
}
unsafe fn unerase(this: ErasedPtr) -> Self {
Pin::new_unchecked(P::unerase(this))
}
}
#[cfg(feature = "alloc")]
macro_rules! impl_erasable {
(for<$T:ident> $($(#[$meta:meta])* $ty:ty),* $(,)?) => {$(
$(#[$meta])*
unsafe impl<$T: ?Sized> ErasablePtr for $ty
where
T: Erasable,
{
#[inline]
fn erase(this: Self) -> ErasedPtr {
let ptr = unsafe { ptr::NonNull::new_unchecked(<$ty>::into_raw(this) as *mut _) };
T::erase(ptr)
}
#[inline]
unsafe fn unerase(this: ErasedPtr) -> Self {
Self::from_raw(T::unerase(this).as_ptr())
}
}
)*}
}
#[cfg(feature = "alloc")]
impl_erasable!(
for<T> Box<T>,
sync::Arc<T>,
sync::Weak<T>,
rc::Rc<T>,
rc::Weak<T>,
);
#[cfg(has_never)]
unsafe impl ErasablePtr for ! {
#[inline(always)]
fn erase(this: !) -> ErasedPtr {
this
}
#[rustfmt::skip]
#[inline(always)]
unsafe fn unerase(_this: ErasedPtr) -> Self {
#[cfg(debug_assertions)] {
panic!("attempted to unerase erased pointer to !")
}
#[cfg(not(debug_assertions))] {
core::hint::unreachable_unchecked()
}
}
}
#[inline(always)]
#[allow(clippy::needless_lifetimes)]
unsafe fn erase_lt<'a, 'b, T: ?Sized>(this: &'a T) -> &'b T {
&*(this as *const T)
}
#[inline(always)]
#[allow(clippy::needless_lifetimes)]
unsafe fn erase_lt_mut<'a, 'b, T: ?Sized>(this: &'a mut T) -> &'b mut T {
&mut *(this as *mut T)
}